Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sens Actuators B Chem ; 379: 133244, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2165856

ABSTRACT

Nucleic acid amplification is crucial for disease diagnosis, especially lethal infectious diseases such as COVID-19. Compared with PCR, isothermal amplification methods are advantageous for point-of-care testing (POCT). However, complicated primer design limits their application in detecting some short targets or sequences with abnormal GC content. Herein, we developed a novel linear displacement isothermal amplification (LDIA) method using two pairs of conventional primers and Bacillus stearothermophilus (Bst) DNA polymerase, and reactions could be accelerated by adding an extra primer. Pseudorabies virus gE (high GC content) and Salmonella fimW (low GC content) genes were used to evaluate the LDIA assay. Using strand displacement (SD) probes, a LDIA-SD method was developed to realize probe-based specific detection. Additionally, we incorporated a nucleic acid-free extraction step and a pocket-sized device to realize POCT applications of the LDIA-SD method. The LDIA-SD method has advantages including facile primer design, high sensitivity and specificity, and applicability for POCT, especially for amplification of complex sequences and detection of infectious diseases.

2.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1947760

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy , Protein Processing, Post-Translational , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Exoribonucleases/metabolism , Host-Pathogen Interactions/drug effects , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sirtuins/metabolism , Succinates/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
3.
J Virol ; 96(6): e0189721, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1631836

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2' sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike's conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2' cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2' sites are very important, like the S2' cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Amino Acid Motifs/genetics , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL